\qquad
Precalculus

Purpose: In this problem set, you will improve your understanding of logarithmic functions by studying their graphical properties.

1. Let's get warmed up with some matching.

A

E

F

B

C
$\ldots f(x)=\log _{2}(x)$

$$
\begin{array}{r}
f(x)=\frac{1}{2} \log _{2}(x) \\
f(x)=\log _{2}(-x)
\end{array}
$$

$\ldots f(x)=2 \log _{2}(x)$
$f(x)=2 \log _{2}(-x)$
$\ldots f(x)=-2 \log _{2}(x)$
2. We will build a graph of $f(x)=\log _{2}(x+1)+2$.
(a) What is the domain of f ? What is the range of f ?
(b) We want to graph this function by transforming the graph of $g(x)=\log _{2}(x)$. How do we move from g to f with function transformations?
(c) Sketch the graphs of f and g, being sure to label three points on each graph.

(d) List any and all vertical asymptotes, horizontal asymptotes, and end behavior.
3. We will build a graph of $f(x)=3 \log _{1 / 3}(x)+1$.
(a) What is the domain of f ? What is the range of f ?
(b) We want to graph this function by transforming the graph of $g(x)=\log _{1 / 3}(x)$. How do we move from g to f with function transformations?
(c) Sketch the graphs of f and g, being sure to label three points on each graph.

(d) List any and all vertical asymptotes, horizontal asymptotes, and end behavior.
4. We will build a graph of $f(x)=-\log _{3}(3 x-6)$.
(a) What is the domain of f ? What is the range of f ?
(b) We want to graph this function by transforming the graph of $g(x)=\log _{3}(x)$. How do we move from g to f with function transformations?
(c) Sketch the graphs of f and g, being sure to label three points on each graph.

(d) List any and all vertical asymptotes, horizontal asymptotes, and end behavior.

